Descriptive Econometrics for Non-stationary Time Series with Empirical Illustrations By
نویسنده
چکیده
SUMMARY Recent work by the author on methods of spatial density analysis for time series data with stochastic trends is reviewed. The methods are extended to include processes with deterministic trends, formulae for the mean spatial density are given, and the limits of sample moments of non-stationary data are shown to take the form of moments with respect to the underlying spatial density, analogous to population moments of a stationary process. The methods are illustrated in some empirical applications and simulations. The empirical applications include macroeconomic data on inflation, financial data on exchange rates and political opinion poll data. It is shown how the methods can be used to measure empirical hazard rates for inflation and deflation. Empirical estimates based on historical US data over the last 60 years indicate that the predominant inflation risks are at low levels (2–6%) and low two-digit levels (10–12%), and that there is also a significant risk of deflation around the 1% level.
منابع مشابه
A new adaptive exponential smoothing method for non-stationary time series with level shifts
Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملUsing Wavelets and Splines to Forecast Non-Stationary Time Series
This paper deals with a short term forecasting non-stationary time series using wavelets and splines. Wavelets can decompose the series as the sum of two low and high frequency components. Aminghafari and Poggi (2007) proposed to predict high frequency component by wavelets and extrapolate low frequency component by local polynomial fitting. We propose to forecast non-stationary process u...
متن کاملA comparison of parametric and non-parametric methods of standardized precipitation index (SPI) in drought monitoring (Case study: Gorganroud basin)
The Standardized Precipitation Index (SPI) is the most common index for drought monitoring. Although the calculation of this index is usually done by using the gamma distribution fitting of precipitation data, studies have shown that for accurate monitoring of drought, the optimal distribution of precipitation in each month should be determined. On the other hand, in non-stationary time series,...
متن کاملSignal Extraction for Nonstationary Multivariate Time Series with Illustrations for Trend Inflation
This paper advances the theory and methodology of signal extraction by introducing asymptotic and finite sample formulas for optimal estimators of signals in nonstationary multivariate time series. Previous literature has considered only univariate or stationary models. However, in current practice and research, econometricians, macroeconomists, and policymakers often combine related series tha...
متن کامل